Solving the Shortest Vector Problem in $2^n$ Time via Discrete Gaussian Sampling

نویسندگان

  • Divesh Aggarwal
  • Daniel Dadush
  • Oded Regev
  • Noah Stephens-Davidowitz
چکیده

We give a randomized 2n+o(n)-time and space algorithm for solving the Shortest Vector Problem (SVP) on n-dimensional Euclidean lattices. This improves on the previous fastest algorithm: the deterministic Õ(4n)-time and Õ(2n)-space algorithm of Micciancio and Voulgaris (STOC 2010, SIAM J. Comp. 2013). In fact, we give a conceptually simple algorithm that solves the (in our opinion, even more interesting) problem of discrete Gaussian sampling (DGS). More specifically, we show how to sample 2n/2 vectors from the discrete Gaussian distribution at any parameter in 2n+o(n) time and space. (Prior work only solved DGS for very large parameters.) Our SVP result then follows from a natural reduction from SVP to DGS. We also show that our DGS algorithm implies a 2n+o(n)-time algorithm that approximates the Closest Vector Problem to within a factor of 1.97. In addition, we give a more refined algorithm for DGS above the so-called smoothing parameter of the lattice, which can generate 2n/2 discrete Gaussian samples in just 2n/2+o(n) time and space. Among other things, this implies a 2n/2+o(n)-time and space algorithm for 1.93approximate decision SVP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete Gaussian Sampling Reduces to CVP and SVP

The discrete Gaussian DL−t,s is the distribution that assigns to each vector x in a shifted lattice L − t probability proportional to e−π‖x‖ 2/s2 . It has long been an important tool in the study of lattices. More recently, algorithms for discrete Gaussian sampling (DGS) have found many applications in computer science. In particular, polynomial-time algorithms for DGS with very high parameters...

متن کامل

Linear Time Varying MPC Based Path Planning of an Autonomous Vehicle via Convex Optimization

In this paper a new method is introduced for path planning of an autonomous vehicle. In this method, the environment is considered cluttered and with some uncertainty sources. Thus, the state of detected object should be estimated using an optimal filter. To do so, the state distribution is assumed Gaussian. Thus the state vector is estimated by a Kalman filter at each time step. The estimation...

متن کامل

A New Algorithm for the Discrete Shortest Path Problem in a Network Based on Ideal Fuzzy Sets

A shortest path problem is a practical issue in networks for real-world situations. This paper addresses the fuzzy shortest path (FSP) problem to obtain the best fuzzy path among fuzzy paths sets. For this purpose, a new efficient algorithm is introduced based on a new definition of ideal fuzzy sets (IFSs) in order to determine the fuzzy shortest path. Moreover, this algorithm is developed for ...

متن کامل

A Cuckoo search algorithm (CSA) for Precedence Constrained Sequencing Problem (PCSP)

Precedence constrained sequencing problem (PCSP) is related to locate the optimal sequence with the shortest traveling time among all feasible sequences. In PCSP, precedence relations determine sequence of traveling between any two nodes. Various methods and algorithms for effectively solving the PCSP have been suggested. In this paper we propose a cuckoo search algorithm (CSA) for effectively ...

متن کامل

Solving the Shortest Lattice Vector Problem in Time 2

The Shortest lattice Vector Problem is central in lattice-based cryptography, as well as in many areas of computational mathematics and computer science, such as computational number theory and combinatorial optimisation. We present an algorithm for solving it in time 2 and space 2, where n is the lattice dimension. This improves the best previously known algorithm, by Micciancio and Voulgaris ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1412.7994  شماره 

صفحات  -

تاریخ انتشار 2014